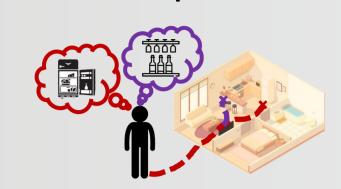


OPEN SCENE GRAPHS FOR OPEN-WORLD OBJECT GOAL NAVIGATION


Check out our website!

Joel Loo* [joell@u.nus.edu], Zhanxin Wu* [zhanxinwu@u.nus.edu], David Hsu [dyhsu@comp.nus.edu.sg]

Open-World ObjectNav

Can we search novel scenes for an open-set object class, in *any* environment, with *any* embodiment?

 Requires semantic reasoning, common-sense priors

 Must handle diverse instructions, environments & embodiments

white ceramic pot

at home!"

Approach: Compose an ObjectNav robot system purely built from Foundation Models (FMs)

Problem: Need a structured scene memory to retain information for FMs, that is also built with FMs

Explorer, a general system for Open-World ObjectNav

Open-set instructions

Different embodiments

Open Scene Graphs

Meta-structure

are constraints on

Defines *minimal structure and scene information* needed in
OSGs to enable *localisation*, *planning and control*.

*l.*e.,

- Minimally needed layer, node and edge types
- Minimally needed attributes in each node
- Allowed edge connections

OSG Specification: *E.g.*, of household environments:

- "RegionAbstraction1_Layer": {
- # [Optional] Semantically meaningful spatial abstractions
 - "layer_type": "floor",
- "Places Layer": {
- # [Required] Smallest semantically meaningful regions
 - "layer_type": "room",
- "Connectors_Layer": {
- #[Optional] Connective structures between regions
 - "layer_type": ["stairs", "doors"]
- "Objects_Layer": {
- # [Required] Task-relevant semantic features

Specifies
structure of

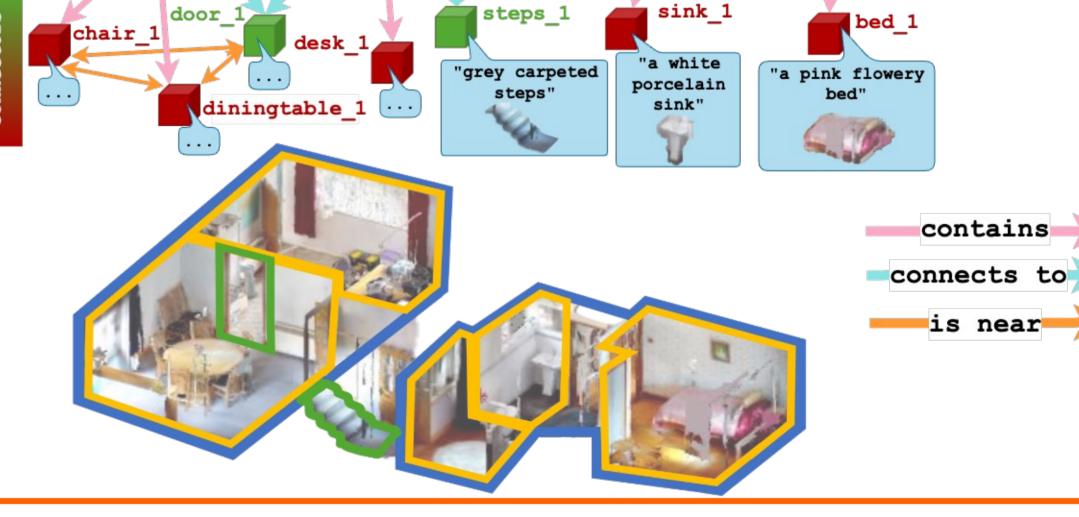
floor_2

floor_1

studyroom_1

studyroom_1

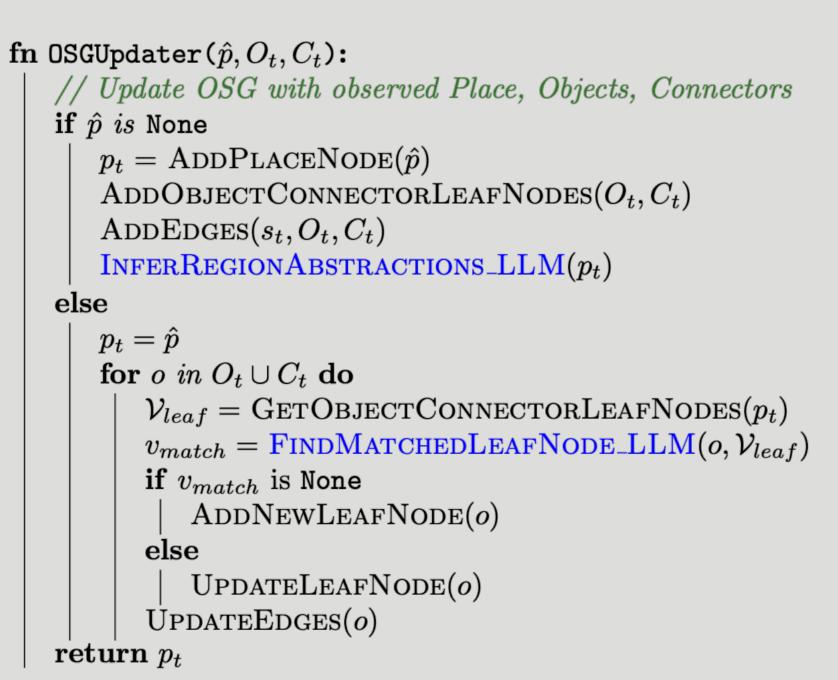
foyer_1

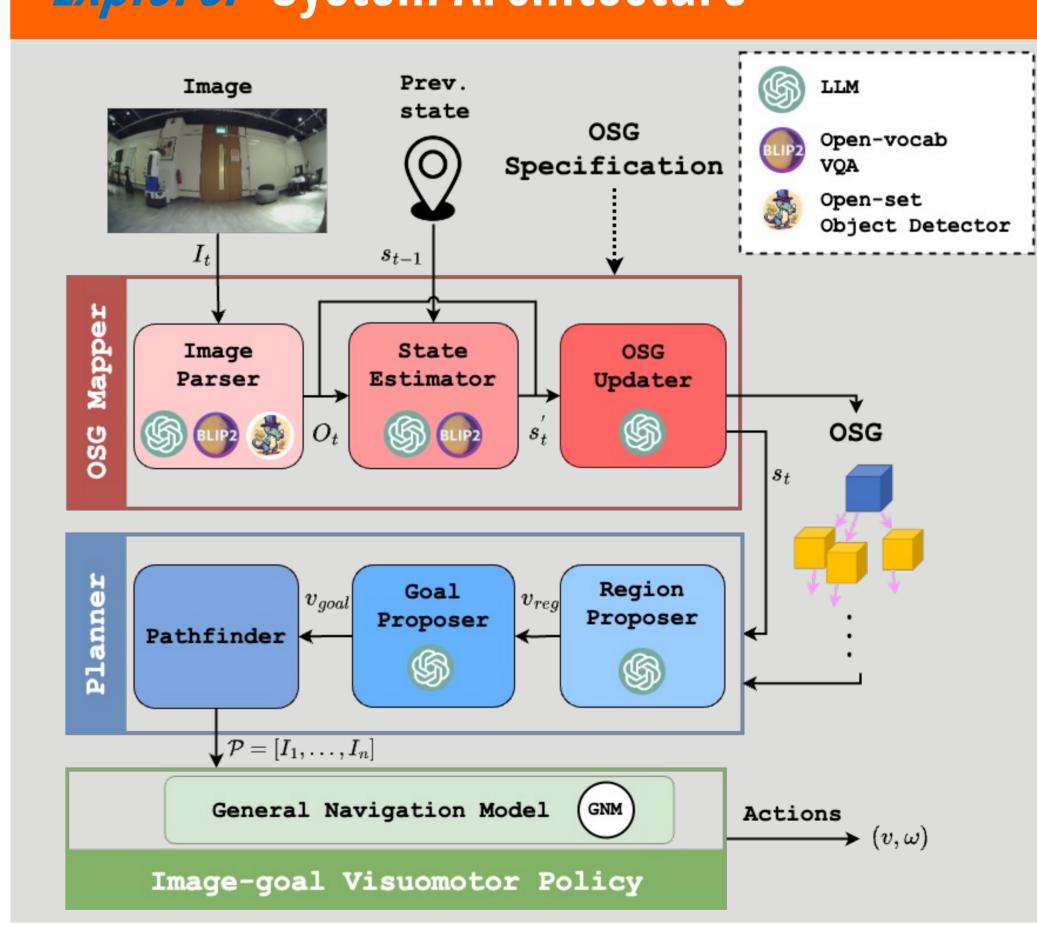

bedroom_1

bedroom_1

bedroom_1

bedroom_1


bedroom_1


OSG Mapper: Builds OSGs online, following OSG spec

- Uses only *FMs*: *i.e.*, LLM, open-vocab VQA, open-set Object Detector
- Uses objects as features for data association

 $\begin{array}{l} \text{fn ImageParser}\,(I_t) \colon \\ & //\,\textit{Extract Place, Objects, Connectors from observations} \\ & P_t = \texttt{LabelPlace_VLM_VQA}(I_t) \\ & D_t = \texttt{DETECTOBJECTSCONNECTORS_VLM_OD}(I_t) \\ & O_t, C_t = \texttt{CLassifyObjectsAndConnectors_LLM}(D_t) \\ & \text{for } o \ in \ O_t \cup C_t \ \text{do} \\ & | \ o.attr = \texttt{LabelWithTextualAttribs_VLM_VQA}(o) \\ & \text{return } P_t, O_t, C_t \\ \hline \\ & \text{fn StateEstimator}\,(P_t, O_t, C_t) \colon \\ & | \ //\,\textit{Estimate robot's current location (Place)} \\ & P^{OSG} = \texttt{SORTByDistance}(all\ Place\ nodes\ in\ OSG) \\ & \text{for } p \ in\ P^{OSG} \ \text{do} \\ & | \ \text{if IsPlaceMatchedWithObs_LLM}(p, O_t \cup C_t) \\ & | \ \text{return } p \\ & \text{return None} \\ \hline \end{array}$

Explorer System Architecture

Experiments: Simulation

Comparison With LLM-based ObjectNav Methods On HM3D

Method	Success (↑)	SPL (†)	DTG (m) (↓)
Greedy LLM (based on [11])	0.275	0.080	5.078
LFG [39]	0.675	0.389	2.411
Explorer-FMM-GT	0.775	0.380	1.702
Explorer-FMM	0.693	0.283	2.338

Comparison With ObjectNav Methods On Gibson

Method	Success (†)	SPL (†)	$\mathbf{DTG}\ (\downarrow)$	TF	NM
SemExp [5]	0.657	0.339	1.474	×	X
PONI [31]	0.736	0.410	1.250	X	X
FBE [50]	0.641	0.283	1.780	1	X
SemUtil [8]	0.693	0.405	1.488	✓	X
Explorer-FMM	0.734	0.386	1.722	✓	✓

(TF: training free. NM: Non-metric)

- LLM reasoning with Open Scene Graphs lets Explorer strongly outperform LLM-based methods
- LLMs' rich semantic priors lets the zero-shot Explorer perform on par with task-specific learned methods